Home >> Research >> Progress >> Content
Sustainable lithium extraction enabled by responsive metal-organic frameworks with ion-sieving adsorption effects
2024-02-03

Xu Wu*, Huacheng Zhang*, Xinyu Zhang, Qian Guan, Xiaocong Tang, Hao Wu, Mingbao Feng, Huanting Wang, and Ranwen Ou*


Proceedings of the National Academy of Sciences of the United States of America

https://www.pnas.org/doi/10.1073/pnas.2309852121

Published: February 2, 2024


Abstract

Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g−1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.



Baidu
sogou
Top